Гост 24452-80 бетоны. методы определения призменной прочности, модуля упругости и коэффициента пуассона
Содержание:
- Общее понятие
- МЕТОДЫ НАСЫЩЕНИЯ ОБРАЗЦОВ ВОДОЙ И ЖИДКИМИ НЕФТЕПРОДУКТАМИ
- Модуль сдвига
- Параметры, от которых зависит упругость древесины
- Детальное определение
- Пошаговое приготовление бетона
- ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
- Что это такое
- 5. ОБРАБОТКА РЕЗУЛЬТАТОВ
- Модуль деформации бетона
- Применение
- Удлинение (при разрыве)
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
МЕТОДЫ НАСЫЩЕНИЯ ОБРАЗЦОВ ВОДОЙ И ЖИДКИМИ НЕФТЕПРОДУКТАМИ
. Насыщение производят методом капиллярного насыщения.
Степень насыщения контролируют по увеличению массы образца путем периодического взвешивания. Образцы выдерживают в ваннах до полного их насыщения жидкостью. За полное насыщение принимают прекращение увеличения массы образца при двух последующих взвешиваниях.
. Насыщение производят в ваннах, выполненных из материалов химически стойких к воде и нефтепродуктам и другим жидкостям.
При насыщении тяжелыми нефтепродуктами (минеральные масла, мазуты и т.п.) ванны должны обеспечивать размещение в них образцов в горизонтальном положении.
Высота ванны должна быть не менее чем на 20 мм выше верхней поверхности уложенных в них образцов.
Ванна насыщения легкими нефтепродуктами (бензин, керосин и т.п.) должна иметь герметически закрывающиеся крышки. Рекомендуется в этом случае в качестве ванн использовать фляги вместимостью 40 л с резиновыми прокладками на крышках.
. Перед насыщением образцы взвешивают, определяют их массу с точностью не менее 0,5 г.
. Для насыщения тяжелыми нефтепродуктами образцы помещают в ванны в горизонтальном положении на расстоянии не ближе 20 мм друг от друга и заливают соответствующей жидкостью так, чтобы ее уровень в ванне был от 5 до 15 мм. Далее жидкость по мере насыщения образца периодически доливают. При этом ее уровень должен находиться на расстоянии от 9 до 15 мм от границы между пропитанным и непропитанным бетоном. Последний раз жидкость доливают так, чтобы ее уровень был на 3 — 5 мм ниже верхней грани образца.
. При насыщении легкими нефтепродуктами и водой образцы помещают в ванны и заливают жидкость так, чтобы ее уровень был не менее чем на 10 мм выше верхней грани образцов. Ванны должны быть герметично закрыты крышками.
. Образцы взвешивают при насыщении их водой или легкими нефтепродуктами один раз в сутки, а при насыщении тяжелыми нефтепродуктами — один раз в 7 сут.
Модуль сдвига
Литература
Модуль сдвига
Сдвигом называют деформацию, при которой все слои тела, параллельные некоторой плоскости, смещаются друг относительно друга. При сдвиге объем деформируемого образца не меняется.
Модуль сдвига (N) – одна из нескольких величин, характеризующих упругие свойства материала.
Модуль сдвига связан с модулем Юнга через коэффициент Пуассона:
1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа. Модуль сдвига материалов
Материал | Модуль сдвига | ||
кгс/мм2 | Н/м2 | МПа | |
Металлы | |||
Алюминий | 2300-2700 | 2250-2650 | 22500-26500 |
Алюминий отожженный | 2500 | 2450 | 24500 |
Бронза | 4400 | 4320 | 43200 |
Бронза алюминиевая, литье | 4180 | 4100 | 41000 |
Бронза фосфористая катаная | 4180 | 4100 | 41000 |
Висмут | 1200-1400 | 1180-1370 | 11800-13700 |
Висмут литой | 1220 | 1200 | 12000 |
Вольфрам | 13300 | 13050 | 130500 |
Вольфрам отожженный | 8970-21910 | 8800-21500 | 88000-215000 |
Дюралюминий | 2750 | 2700 | 27000 |
Дюралюминий катаный | 2650 | 2600 | 26000 |
Железо кованое | 8000-8300 | 7850-8150 | 78500-81500 |
Железо литое | 3570-5400 | 3500-5300 | 35000-53000 |
Золото | 2600-3900 | 2550-3830 | 25500-38300 |
Золото отожженное | 2970 | 2910 | 29100 |
Инвар | 5600 | 5500 | 55000 |
Кадмий | 1940 | 1900 | 19000 |
Кадмий литой | 1960 | 1920 | 19200 |
Константан | 6200 | 6080 | 60800 |
Латунь | 2700-3700 | 2650-3630 | 26500-36300 |
Латунь корабельная катаная | 3670 | 3600 | 36000 |
Латунь холоднотянутая | 3470-3670 | 3400-3600 | 34000-36000 |
Манганин | 4700 | 4610 | 46100 |
Медь | 4000-4800 | 3920-4700 | 39200-47000 |
Медь деформированная | 4230 | 4150 | 41500 |
Медь прокатанная | 3980 | 3900 | 39000 |
Медь холоднотянутая | 4890 | 4800 | 48000 |
Нейзильбер | 4000 | 3920 | 39200 |
Никель | 7500 | 7360 | 73600 |
Олово | 1700 | 1670 | 16700 |
Олово литое | 1670-1810 | 1640-1780 | 16400-17800 |
Палладий | 4000-5000 | 3920-4900 | 39200-49000 |
Палладий литой | 5200 | 5110 | 51100 |
Платина | 6000-7200 | 5880-7060 | 58800-70600 |
Платина отожженная | 6200 | 6090 | 60900 |
Свинец | 550-600 | 540-580 | 5400-5800 |
Свинец литой | 575 | 562 | 5620 |
Серебро | 2500-2900 | 2450-2840 | 24500-28400 |
Серебро отожженное | 2640 | 2590 | 25900 |
Сталь инструментальная | 8000-8500 | 7850-8340 | 78500-83400 |
Сталь легированная | 8150 | 8000 | 80000 |
Сталь специальная | 8500-8800 | 8340-8630 | 83400-86300 |
Титан | 4480 | 4400 | 44000 |
Цинк | 3000-4000 | 2940-3920 | 29400-39200 |
Цинк катаный | 3160 | 3100 | 31000 |
Чугун | 2900-3500 | 2840-3430 | 28400-34300 |
Чугун белый, серый | 4480 | 4400 | 44000 |
Чугун ковкий | 4000 | 3920 | 39200 |
Пластмассы | |||
Плексиглас | 151 | 148 | 1480 |
Целлулоид | 66 | 65 | 650 |
Резины | |||
Каучук | 0,28 | 0,27 | 2,7 |
Резина мягкая вулканизированная | 0,05-0,15 | 0,05-0,15 | 0,5-1,5 |
Различные материалы | |||
Бетон | 715-1730 | 700-1700 | 7000-17000 |
Гранит | 1430-4490 | 1400-4400 | 14000-44000 |
Известняк плотный | 1530 | 1500 | 15000 |
Кварцевая нить (плавленая) | 3160 | 3100 | 31000 |
Мрамор | 1430-4490 | 1400-4400 | 14000-44000 |
Стекло | 1780-2950 | 1750-2900 | 17500-29000 |
Литература
- Краткий физико-технический справочник. Т.1 / Под общ. ред. К.П. Яковлева. М.: ФИЗМАТГИЗ. 1960. – 446 с.
- Справочник по элементарной физике / Н.Н. Кошкин, М.Г. Ширкевич. М., Наука. 1976. 256 с.
- Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М., Атомиздат. 1976, 1008 с.
Параметры, от которых зависит упругость древесины
Модуль упругости древесины — параметр изменяющийся, на его значение влияют:
- Влажность. Упругость древесины находится в обратной зависимости от влажности. То есть при высокой влажности дерева, его способность возвращаться к исходной форме будет минимальной.
- Прямослойность. Если волокна расположены извилисто, беспорядочно, то способность восстанавливать форму у неё будет заметно ниже, чем у прямослойной.
- Плотность. Дерево с низкой плотностью не так упруго, как более плотное.
- Возраст дерева. Древесина старого дерева более упруга, чем молодого.
- Природные особенности дерева. Хвойные деревья имеют однорядные мелкие сердцевинные лучи, поэтому их древесина более упругая, хотя удельный вес у таких пород не велик.
- Возраст самой древесины. Более молодые слои ствола дерева называют заболонью, те, что располагаются ближе к центру, и, соответственно, старее – ядром. Заболонь более упругая, чем ядро.
Детальное определение
Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.
Пусть l и d длина и поперечный размер образца до деформации, а l ′ > и d ′ > — длина и поперечный размер образца после деформации. Тогда продольным удлинением
называют величину, равную ( l ′ − l ) -l)> , а поперечнымсжатием — величину, равную − ( d ′ − d ) -d)> . Если ( l ′ − l ) -l)> обозначить как Δ l , а ( d ′ − d ) -d)> как Δ d , тоотносительное продольное удлинение будет равно величине Δ l l >> , аотносительное поперечное сжатие — величине − Δ d d >> . Тогда в принятых обозначениях коэффициент Пуассона μ имеет вид:
μ = − Δ d d l Δ l . >>.>
Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся 0>»> Δ l l > 0 >>0> 0>»/> и Δ d d 0 > , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.
Для абсолютно хрупких материалов коэффициент Пуассона равен 0, для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.
Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.
К примеру, бумага из одно
слойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения долимного слойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.
Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0,54), натрий (−0,44), калий (−0,42), кальций (−0,27), медь (−0,13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.
Пошаговое приготовление бетона
Основные характеристики вы получите при правильном приготовлении смеси. Стоит использовать бетономешалку, так как размешать все компоненты собственноручно сложно.
Марка М350 обычно выпускается в виде смеси цемента и твердого наполнителя, причем одним из составляющих может являться гранит или гравийный щебень
Поэтому придерживайтесь следующей инструкции:
- Песок, цемент поместить в бетономешалку и качественно перемешать.
- Налейте воду в состав и мешайте до однородного состояния.
- Добавьте пластификаторы.
- Зимой используются антиморозные присадки, обеспечивая стойкость к низким температурам.
- Смочите смесь водой и засыпьте твердый заполнитель.
- Тщательно размешайте раствор.
- Используйте бетон в течение двух часов до застывания.
Качество готового материала зависит не только от содержания пропорций, но и от свежести самих составляющих. Песок должен быть чистым, просеянным, без добавок, цемент качественным для получения хорошего бетона В25. К воде также есть особые требования – она должна быть чистой, не набранной из водоема, профессионалы рекомендуют использовать только питьевую воду.
ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
ВЫСОКОПРОЧНЫЙ БЕТОН
Бетон как материал, не подчиняющийся закону Гука, имеет диаграмму сжатия криволинейного очертания. Известны различные варианты математического описания кривой G = /(є), в основу которых положены экспериментальные закономерности . Исследования, значительная часть которых была проведена в ЦНИИС , позволили связать характерную форму этой кривой с физическими процессами деформирования и разрушения бетона (см. главу II).
При кратковременном возрастании статической нагрузки отклонение диаграммы сжатия от прямолинейной обусловлено преимущественно нарушением сплошности материала, вследствие перехода границы микроразрушения Rr по мере роста нагрузки и дальнейшим развитием микротрещин в бетоне . В более общем случае степень искривления диаграммы зависит также от скорости нагружения, поскольку наблюдаемые деформации включают определенную долю деформаций ползучести, проявляющихся частично на всех уровнях нагрузки. Поэтому даже при небольших нагрузках (в зоне так называемой линейной ползучести) обнаруживается некоторая криволинейность диаграммы . Вследствие этого модуль деформаций бетона, определяемый как тангенс угла наклона секущей к кривой о — є, не является постоянной величиной и уменьшается по мере роста напряжений.
Для практических оценок пределов изменения секущего модуля под кратковременной нагрузкой необходимо располагать данными, по крайней мере, о двух параметрах кривой а — є, начальном угле наклона этой кривой (начальный модуль деформаций) и величине деформаций, соответствующей максимуму кривой (предельная деформация под кратковременной нагрузкой). В указанном диапазоне модуль деформаций изменяется более или менее плавно . Значения обоих параметров, а также характер изменения модуля деформаций с ростом напряжений от нуля до максимальной величины существенно зависят от особенностей структуры бетона .
Рассмотрим характеристики деформативной способности бетона при кратковременном нагружении (начальный модуль деформаций и величину предельной деформативности), которые наиболее часто применяются для расчетов элементов конструкций.
Хотя наибольшее число экспериментальных данных в этой области получено при испытании бетонов в условиях одноосного сжатия, установленные закономерности можно с достаточным основанием использовать применительно к действию растягивающих напряжений в бетоне .
В лабораторных условиях начальный модуль деформаций бетона Е = ^ находят при определенной величине
Относительного уровня напряжений в бетоне, составляющей 20—30% предела прочности опытных образцов . В этой области напряжений (и вплоть до границы R?) кривая, характеризующаяся зависимостью а — є, имеет незначительную кривизну, поэтому начальный модуль деформаций практически не зависит от величины напряжений. Повторным нагружением бетона в зоне невысоких напряжений до некоторой степени можно исключить влияние остаточных деформаций бетона на величину модуля. Определенную таким путем характеристику деформативности бетона с ненарушенной структурой рассматривают условно как модуль упругости (начальный модуль упругости) этого материала.
Кольца колодцев
Кольца колодцев были и остаются очень востребованным строительным материалом. К слову, кольца колодцев приобретают не только те, чья деятельность связана с водоснабжением и канализацией, но и телефонисты, Интернет-провайдеры и, конечно …
ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ БЕТОНА
Полученное выражение (V.15) дает возможность сформулировать общее положение о характере зависимости меж — ду упругими и прочностными свойствами тяжелого бетона. Особенность этой связи заключается в том, что оца не является …
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА
Об усадке тяжелого бетона имеется не меньше экспериментальных данных, чем о его ползучести. Попытки- использовать эти данные для получения общих количественных закономерностей явления содержатся в ряде работ. При оценке возможной …
Что это такое
Определение
Идеальное время для бетонных работ на открытом воздухе — теплый сезон. Увы, не всегда есть возможность дождаться весны: в ряде случаев монолитное строительство осуществляется и при отрицательных температурах.
При бетонировании в мороз основная проблема — дать бетону набрать прочность до начала кристаллизации воды в нем. Основные методы ее решения сводятся к теплоизоляции опалубки или подогреву уложенной смеси. При этом выбор конкретного решения определяется прежде всего тем, насколько быстро форма с бетоном будет остывать.
Скорость же, с которой определенная конструкция будет терять тепло, определяется отношением площади ее охлаждаемой поверхности к объему.
Практический вывод: медленнее всего будет остывать идеальный шар.
Модуль поверхности бетонной конструкции — это, собственно, и есть отношение ее охлаждаемой площади к внутреннему объему. Формула модуля поверхности бетона предельно проста: Мп = S/V, где Мп — модуль поверхности; S — площадь поверхности конструкции, контактирующая с холодным воздухом, грунтом или охлажденными ниже нуля прочими элементами конструкции; V — полный объем монолита.
Поскольку в числителе формулы значение указывается в квадратных метрах (м2), а в знаменателе — в кубических (м3), искомый параметр будет измеряться в странных единицах, описываемых как 1/м, или м^-1.
При укладке бетона на непромерзший грунт нижняя поверхность фундамента исключается из расчетов.
Примеры расчета
Давайте рассчитаем интересующий нас параметр для плитного фундамента размером 6х10 м и толщиной 0,25 м, укладываемого при отрицательной температуре окружающего воздуха на талый грунт.
- Очевидно, что охлаждаться будут все поверхности плиты, кроме нижней: она ведь контактирует с грунтом, имеющим температуру выше нуля. Складываем их площади: (6 х 0,25) х 2 + (10 х 0,25) х 2 + 6 х 10 = 3 + 5 + 60 = 68 м2.
- Рассчитываем объем плиты. Он равен, как мы помним из школьного курса геометрии, произведению сторон прямоугольного параллелепипеда: 10 х 6 х 0,25 = 15 м3.
- Вычисляем модуль поверхности: 68 м2 / 15 м3 = 4,5(3) 1/м.
На практике расчеты балок, цилиндров с переходами диаметров и прочих конструкций могут быть достаточно сложны и занимать значительное время. Как и все люди, строители склонны по возможности упрощать себе жизнь; для этой цели существует несколько упрощенных формул расчетов для основных конструктивных элементов.
Конструктивный элемент | Формула расчета |
Балки и колонны прямоугольного сечения со сторонами сечения, равными A и B | Мп = 2/А + 2/В. Длина балки или высота колонны не влияет на модуль поверхности и не учитывается в расчетах. |
Балки и колонны квадратного сечения со стороной сечения, равной А | Мп = 4/А |
Куб со стороной А | Мп = 6/А. В этом случае учитываются все поверхности куба; расчет актуален для случая, когда все они охлаждаются (куб стоит на мерзлом грунте и контактирует с холодным воздухом). |
Отдельно стоящий на мерзлом грунте параллелепипед со сторонами А, В и С | Мп = 2/А + 2/В + 2/С |
Параллелепипед со сторонами А, В и С, прилегающий одной из граней к теплому массиву | Мп = 2/А + 2/В + 1/С |
Цилиндр с радиусом R и высотой С | Мп = 2/R + 2/С |
Плита или стена толщиной А, охлаждаемая с обеих сторон | Мп = 2/А |
Наглядный пример: монолитная стена охлаждается с обеих сторон.
5. ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле
()
где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);
F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.
5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле
()
где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;
P1— соответствующее приращение внешней нагрузки;
ε1у — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
В пределах ступени нагружения деформации определяют по линейной интерполяции.
5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле
()
где ε2у — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
5.4 Значения ε1у и ε2у определяют по формулам:
ε1у = ε1 — ∑ε1п; ()
ε2у = ε2 — ∑ε2п, ()
где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;
∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.
Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.
5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:
ε1 = Dl1l1; ()
ε2 = Dl2l2, ()
где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;
l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.
При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.
5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.
Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле
()
где — среднее значение указанных величин в серии образцов данного размера;
yi — значение указанных величин по отдельным образцам;
п — число образцов в серии.
5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.
В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:
а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;
б) модуль упругости бетона отдельных образцов, МПа;
в) средний модуль упругости бетона в серии образцов, МПа;
г) значение коэффициента Пуассона отдельных образцов;
д) среднее значение коэффициента Пуассона в серии образцов;
е) база измерения деформаций, мм;
ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);
з) температура нагрева;
и) температура и относительная влажность воздуха помещения, в котором производились испытания.
В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.
5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .
Модуль деформации бетона
Устранение или ослабление вредного влияния температурных деформаций форм на трещиностойкость изделий должно учитываться на всех стадиях подготовки к выпуску изделий: при выборе технологической схемы производства, проектировании форм и назначении режимов тепловлажностной обработки бетона.
При выборе технологии изготовления должны обеспечиваться в максимально возможной степени модуль деформации бетона, взаимно свободные деформации изделия и формы. Для этого перед началом тепловой обработки предусматривается удаление штырей, фиксаторов, закладных элементов и т. п. При производстве изделий сложного очертания удаляются и отдельные бортовые элементы на участках переменного сечения. Полное освобождение граней изделия до пропаривания весьма эффективно, но при этом назначаются более мягкие режимы термообработки для уменьшения нарушений структуры бетона и его остаточного объемного расширения.
От состояния рабочих поверхностей формы и вида применяемой смазки зависит величина силы сцепления по контакту бетона с поверхностью формы. Отсутствие вмятин в обшивке поддона и бортов, хорошая очистка форм и использование высококачественной смазки или полимерных и эмалевых покрытий позволяют уменьшить силы сцепления изделия с формой и снизить появление трещин в период нагрева и остывания от опережающих деформаций форм.
Для повышения предельной растяжимости горячего бетона и предотвращения появления трещин при изготовлении плитных изделий на поддонах в период остывания рекомендуется применять разбрызгивание (дождевание) горячей воды на верхние поверхности плит в пропарочной камере перед ее открыванием. Повышенная влажность бетона способствует увеличению его трещиностойкости, растяжимости.
Особо неблагоприятные условия создаются при изготовлении изделий сложной конфигурации в обогреваемых формах, где наблюдаются температурные перепады, причины появления которых объясняются недостатками в схемах пароразводки и конструкции паровых рубашек:
— расчленение паровых рубашек ребрами жесткости на несколько подсекций; распределение пара перфорированными трубами, отверстия которых быстро засоряются;
Применение
В строительстве чаще используют более подвижные растворы В20 П3-П4. Такие удобно заводить в опалубку посредством бетононасоса.
Бетон применяется:
- Обустройство фундаментов на устойчивых грунтах под нетяжелые одноэтажные дома из бруса или блоков, а также двухэтажных домиков облегченной конструкции (каркасные);
- Изготовление сборных железобетонных изделий – лестничных площадок и маршей, легких перемычек и других элементов;
- Обустройство отмосток и придомовых площадок;
- Строительство самонесущих ненагруженных стен;
- Возведение от фундамента до крыши гаражей и хозяйственных построек;
- Изготовление колонн и колодезных колец при условии использования продуманной системы армирования.
Во многих случаях для частотного строительства достаточно характеристик бетона в20 (М250), но по разным причинам чаще принимают М300 (в25). Это приводит к необоснованному удорожанию строительства.
Бетон в20 можно замешивать непосредственно на строительной площадке, что позволит сэкономить на транспортных перевозках. Вообще это отличная марка раствора для загородного строительства и благоустройства, с которой можно сохранить бюджет и обеспечить надежность возводимых конструкций с достаточным запасом прочности.
Удлинение (при разрыве)
Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.
Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.
Рисунок 5 – Влияние легирующих элементов на прочностные свойства и относительное удлинение
Удлинение А
Удлинение в процентах после разрыва образца при исходном расстоянии между метками 5,65 · √ S0, где S0 – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.
Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.
Удлинение А50мм
Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.