Допустимая норма радиации для человека: дозы в мкр/ч, зивертах и микрозивертах
Содержание:
- Ранжирование пациентов
- Учет доз облучения
- Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.
- Последствия радиационного облучения
- Особенности радиационного исследования в медицине
- Единицы измерения
- Разновидность излучения
- Зиверт, миллизиверт и микрозиверт
- Уровень радиации в Ufi онлайн
- Виды радиоактивных излучений
- Какова допустимая доза облучения при медицинских исследованиях?
- Где можно пройти обследование
- Как проводится процедура?
- Диагностика
Ранжирование пациентов
В связи с наличием лучевой нагрузки рентгенологические исследования назначаются только по строгим показаниям. Всех пациентов делят на 3 группы:
- АД – это те больные, которым рентген назначается при злокачественных патологиях или подозрении на них, а также в тех случаях, когда есть жизненные показания (например, травмы). Предельно допустимая доза в год – 150 мЗв. Облучение свыше этого значения может вызвать лучевые поражения.
- БД – пациенты, которым облучение проводится с целью диагностики какого-либо заболевания не злокачественной природы. Для них доза не должна превышать 15 мЗв/год. При ее превышении резко увеличивается риск возникновения заболеваний в отдаленном периоде и генетических мутаций.
- ВД – категория лиц, которым рентгенографическое исследование проводится с профилактической целью, а также те работники, деятельность которых связана с вредными условиями (предельно допустимая доза составляет 1,5 мЗв).
Учет доз облучения
По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.
На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».
Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.
Единица измерения дозы облучения / дозы радиации Зиверт. Единица измерения радиации Зиверт. Опасные и повседневные уровни радиации.
Зиверт (обозначение: Зв, Sv) — единица измерения СИ эффективной и эквивалентной доз ионизирующего излучения (используется с 1979 г.). 1 зиверт — это количество энергии, поглощенное килограммом биологической ткани, равное по воздействию поглощенной дозе 1 Гр (1 Грей).
Через другие единицы измерения СИ зиверт выражается следующим образом:1 Зв = 1 Дж/кг = 1 м2 / с2 (для излучений с коэффициентом качества, равным 1,0)
- Равенство зиверта и грея показывает, что эффективная доза и поглощeнная доза имеют одинаковую размерность, но не означает, что эффективная доза численно равна поглощeнной дозе. При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
- Единица названа в честь шведского учeного Рольфа Зиверта.
- Раньше (а иногда и сейчас) использовалась единица бэр(биологический эквивалент рентгена), англ. rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы. 100 бэр равны 1 зиверту. Также верно что 100 рентген = 1 зиверт с оговоркой, что рассматривается биологическое действие рентгеновского излучения.
Кратные и дольные единицы зиверта:
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
101 Зв | деказиверт | даЗв | daSv | 10-1 Зв | децизиверт | дЗв | dSv |
102 Зв | гектозиверт | гЗв | hSv | 10-2 Зв | сантизиверт | сЗв | cSv |
103 Зв | килозиверт | кЗв | kSv | 10-3 Зв | миллизиверт | мЗв | mSv |
106 Зв | мегазиверт | МЗв | MSv | 10-6 Зв | микрозиверт | мкЗв | µSv |
109 Зв | гигазиверт | ГЗв | GSv | 10-9 Зв | нанозиверт | нЗв | nSv |
1012 Зв | теразиверт | ТЗв | TSv | 10-12 Зв | пикозиверт | пЗв | pSv |
1015 Зв | петазиверт | ПЗв | PSv | 10-15 Зв | фемтозиверт | фЗв | fSv |
1018 Зв | эксазиверт | ЭЗв | ESv | 10-18 Зв | аттозиверт | аЗв | aSv |
1021 Зв | зеттазиверт | ЗЗв | ZSv | 10-21 Зв | зептозиверт | зЗв | zSv |
1024 Зв | йоттазиверт | ИЗв | YSv | 10-24 Зв | йоктозиверт | иЗв | ySv |
применять не рекомендуется |
Допустимые и смертельные дозы радиации для человека
- Миллизиверт часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).
- Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апр. 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».
- Естественное фоновое ионизирующее излучение в среднем равно 2,4 мЗв/год. При этом разброс значений фонового излучения в разных точках Земли составляет 1—10 мЗв/год.
При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть наступает в 50 % случаев:
- при дозе порядка 3-5 Зв из-за повреждения костного мозга в течение 30—60 суток;
- 10 ± 5 Зв из-за повреждения желудочно-кишечного тракта и лeгких в течение 10—20 суток;
- > 15 Зв из-за повреждения нервной системы в течение 1—5 суток.
Последствия радиационного облучения
Но на этом радиационные эффекты облучения человека не ограничиваются. В случае с нежными тканями слизистых и нервных клеток, происходит их разрушение. Из-за этого могут развиваться разнообразные нарушения психической деятельности.
Часто из-за действия радиации на организм человека страдает зрение. При большой дозе радиации может наступить слепота вследствие лучевой катаракты.
Другие ткани тела претерпевают качественные изменения, что не менее опасно. Именно из-за этого многократно увеличивается риск онкологических заболеваний. Во-первых, меняется структура тканей. А во-вторых, свободные радикалы повреждают молекулу ДНК. Благодаря этому развиваются мутации клеток, что и приводит к раку и опухолям в различных органах тела.
Самое опасное, что данные изменения могут сохраняться и у потомков, из-за повреждения генетического материала половых клеток. С другой стороны, возможно и обратно воздействие радиации на человека – бесплодие. Также во всех без исключения случаях, радиационное облучение приводит к быстрому износу клеток, что ускоряет старение организма.
Мутации
Сюжет многих фантастических историй начинается с того, как радиация приводит к мутации человека или животного. Обычно мутагенный фактор дает главному герою разнообразные сверхспособности. В реальности радиация влияет немного иначе – в первую очередь генетические последствия радиации сказываются на будущих поколениях.
Молекула ДНК участвует не только в размножении человека. Каждая клетка тела делится согласно программе, заложенной в генах. Если данная информация повреждается, клетки начинают делиться неправильно. Это приводит к образованию опухолей. Обычно оно сдерживается за счет иммунной системы, которая пытается ограничить поврежденный участок тканей, а в идеале и избавиться от него. Но из-за иммунодепрессии, вызванной радиацией, мутации могут распространяться бесконтрольно. Из-за этого опухоли начинают пускать метастазы, превращаясь в рак, или разрастаются и давят на внутренние органы, например мозг.
Лейкоз и другие виды рака
Из-за того, что влияние радиации на здоровье человека в первую очередь распространяется на кроветворные органы и кровеносную систему, наиболее частым следствием лучевой болезни является лейкоз. Его еще называют «раком крови». Его проявления затрагивают весь организм:
- Человек теряет в весе, при этом отсутствует аппетит. Его постоянно сопровождает слабость в мышцах и хроническая усталость.
- Появляются боли в суставах, они начинают сильнее реагировать на окружающие условия.
- Воспаляются лимфатические узлы.
- Увеличиваются печень и селезенка.
- Затрудняется дыхание.
- На коже обнаруживаются пурпурные высыпания. Человек часто и обильно потеет, могут открываться кровотечения.
- Проявляется иммунодефицит. Инфекции свободно проникают в тело, из-за чего часто поднимается температура.
До событий в Хиросиме и Нагасаки, врачи не считали лейкоз болезнью от радиации. Но 109 тысяч обследованных японцев подтвердили связь радиации и онкологических заболеваний. Также выяснилась вероятность поражения тех или иных органов. На первом месте оказался лейкоз.
Затем радиационные эффекты облучения людей чаще всего приводят к:
- Рак молочной железы. Поражается каждая сотая женщина, пережившая сильное радиационное облучение.
- Рак щитовидной железы. Им также страдает 1% облученных.
- Рак легких. Эта разновидность сильнее всего проявляет себя у облучаемых шахтеров урановых рудников.
Особенности радиационного исследования в медицине
Рентгеновское излучение занимает почетное второе место среди всех способов облучения человека, после природного. Но по сравнению с последним, излучение, которое применяется в рентгенодиагностике, намного опаснее из-за таких причин:
- Рентгеновское излучение превышает мощность натуральных источников радиации.
- В диагностических целях облучается ослабленный заболеванием человек, что усиливает вред здоровью от рентгеновских лучей.
- Медицинское излучение имеет неравномерное распределение по организму.
- Органы могут подвергаться рентгеновским лучам несколько раз.
Однако, в отличие от радиации природного происхождения, которое трудно предотвратить, рентгенодиагностика уже давно включает в себя разные способы защити от вредного влияния излучения на человека. Об этом немного позже.
Единицы измерения
В отличие от естественного радиационного фона, при медицинских исследованиях облучение является неравномерным. Чтобы определить степень вреда, который рентгеновские лучи наносят человеку, сначала надо разобраться, в каких единицах измеряют дозу облучения.
Для оценки действия ионизирующего излучения в науке была введена специальная величина – эквивалентная доза Н. Она учитывает особенности радиационного воздействия при помощи взвешивающих коэффициентов. Ее значение определяется как произведение поглощенной дозы в органе на взвешивающих коэффициент WR, который зависит от вида излучения (α, β, γ). Поглощенная доза рассчитывается как отношение количества ионизирующей энергии, переданной веществу, к массе вещества в том же объеме. Она измеряется в Греях (Гр).
Возникновение негативных последствий зависит от радиочувствительности тканей. Для этого было введено понятие эффективной дозы, которая является суммой произведений Н в тканях на взвешивающий коэффициент Wt. Его значение зависит от того, на какой орган проводилось воздействие. Так, при рентгене пищевода он равен 0,05, а при облучении легких – 0,12. Эффективная доза измеряется в Зивертах (Зв). 1 Зиверт соответствует такой поглощенной дозе излучения, для которой взвешивающий коэффициент равен 1. Это очень большая величина, поэтому на практике пользуются миллизивертами (мЗв) и микрозивертами (мкЗв).
Разновидность излучения
Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:
- тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
- бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
- гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
- жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
- нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.
Зиверт, миллизиверт и микрозиверт
При определении эффективной дозы учитывается биологическое воздействие радиации, она равна поглощённой дозе, умноженной на коэффициент качества, зависящий от вида излучения и характеризует биологическую активность того или иного вида излучения. Имеет большое значение для радиобиологии.
Единица названа в честь шведского учёного Рольфа Зиверта (de:Rolf Sievert).
Раньше (а иногда и сейчас) использовалась единица бэр (биологический эквивалент рентгена), англ.
rem (roentgen equivalent man) — устаревшая внесистемная единица измерения эквивалентной дозы.
Существует 5 основных единиц измерения доз. Хотя некоторые из них совпадают по размерности, они несут различный смысл.
Рентген — внесистемная единица экспозиционной дозы радиоактивного облучения рентгеновским или гамма-излучением, определяемая по их ионизирующему действию на сухой атмосферный воздух.
- В переводе на систему СИ, 1 Р приблизительно равен 0,0098 Зв
- 1 Р = 1 БЭР
Биологический эквивалент рентгена — устаревшая внесистемная единица измерения эквивалентной дозы излучения.
- 1 БЭР = доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновских или гамма-лучей в 1 Рентген.
- 1 БЭР = 0.01 Зв.
- 100 БЭР равны 1 зиверту.
Грэй — единица поглощенной дозы излучения в системе СИ.
- 1 Гр = поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.
- 1 Гр = 1 Дж/кг = 100 рад.
Зиверт — единица эквивалентной дозы излучения в системе СИ.
- 1 Зв = эквивалентная доза излучения, при которой:
- — поглощенная доза излучения равна 1 грэю; и
- — коэффициент качества излучений равен 1.
- 1 Зв = 1 Дж/кг = 100 бэр.
Рад — внесистемная единица дозы излучения, поглощенной веществом.
- 1 рад = доза радиации на 1 кг массы тела, эквивалентная энергии в 0.01 джоуля.
- 1 рад = 0.01 Гр
УРОВНИ РАЗВИТИЯ
Уровень радиации в Ufi онлайн
Вот почему внезапно затягивает дыхание, веки становятся тяжелыми, отвлекает внимание … Радон проникает сквозь землю, фундамент, почву и балку, как правило, на первый этаж комнаты, подвал под землей. Уплотнение из-за нагрева только увеличивает концентрацию радона: просто нет возможности идти
Многое зависит от строительного материала и полов, на которых стоят здания
Уплотнение из-за нагрева только увеличивает концентрацию радона: просто нет возможности идти. Многое зависит от строительного материала и полов, на которых стоят здания.
Относительно мало радона — дерева, кирпича, бетона. Значительно больше — граниты и плавники. Фосфатный фосфат (образующийся при переработке фосфатной руды) и используемый для изготовления строительных блоков, сухие гипсовые плиты получают на 30% более интенсивное излучение людей.
Очень высокая радиоактивность имеет кирпичную красную глину, которая является отходами при производстве алюминия. NRB определяет стандарты радиобезопасности для радона:
— в проектировании зданий и сооружений он должен обеспечить, чтобы объемная активность изотопов радионов и тонов не превышала 100 Бк / м3;
в управляемом радоне не должно превышать 200 Бк / м3.
Скорость гамма-излучения в этом случае не может превышать мощность в открытой области более чем на 0,3 мкЗв / ч (30 мкР / ч);
—если объемная активность изотопов радона снижается до 400 Бк / м3 и скорость излучения гамма-излучения составляет менее 0,6 мкЗв / ч (60 мкР / ч), то жители таких зданий должны быть переселены.
Виды радиоактивных излучений
Изучая природу радиоактивного излучения, его подвергли воздействию электрического и магнитного полей. Результатом эксперимента стало разделение лучей на положительные и отрицательные, и понимание их неоднородности.
Были открыты закон распада, виды излучений и типы радиоактивности: α-распад, β-превращение, γ-излучение, нейтронное излучение, протонная, кластерная радиоактивности.
Проникая в среду, радиация взаимодействует с атомами, возбуждает их и вырывает электроны. Нейтральные атомы превращаются в положительно заряженные ионы – первичная ионизация. Выбитые электроны за счет собственной энергии сталкиваются с атомами среды и создают вторичную ионизацию.
Растеряв энергию, электроны становятся свободными и образуют отрицательные ионы.
Альфа излучение
Есть 40 природных α-активных ядер и 200 созданных человеком. Альфа излучение – это поток частиц из них.
Проникая через слой вещества, α-частица вступает в неупругое взаимодействие с его атомами и молекулами, ускоряет электроны до преодоления кулоновских ядерных сил и производит ионизацию.
Впоследствии, когда энергия частицы уменьшается, она присоединяет 2 свободных электрона и становится атомом гелия.
Пробег частицы в воздухе 10-11 см, а в тканях тела человека – микроны. Ее большая масса препятствует отклонению от прямого пути.
При внешнем воздействии этого типа излучения на кожу – опасности нет. Если радиоактивный элемент попадет во внутрь с пищей, водой или через рану, то нанесет непоправимые последствия для организма за счет продолжительного времени распада.
Нейтронное излучение
Этот тип излучения используется в оружии массового поражения – нейтронной бомбе. Она способна уничтожать живые объекты, оставляя нетронутыми здания, сооружения, технику.
Нейтральные частицы легко проникают сквозь любую среду и взаимодействуют с ядрами элементов. Отдавая им часть своей энергии, создают вторичную (наведенную) радиацию. Надежной защиты от поражающего фактора не существует. Задержать частицы способны большие объемы воды и некоторые виды полимеров, многослойные среды.
Бета-излучение
Бета-излучение представляет собой поток позитронов и нейтрино или электронов и антинейтрино. Существует третий вариант – k-эффект (захват электрона). Ядро поглощает электрон из оболочки и один из протонов становится нейтроном, при этом испускает нейтрино.
β-излучение распространяется со скоростью близкой к скорости света, сильно отклоняется в электромагнитных полях, но обладает меньшей в сотни раз ионизирующей способностью, чем α-частицы.
За счет лучшего сохранения энергии бета-частицы пробегают большее расстояние – от десятков метров в газах до нескольких мм в металлах. Проникновение в живые ткани – 1,5 см.
Гамма излучение
Y-излучение проникает в свинец на 5 см. В газах распространяется на сотни метров, тело человека «прошивает» насквозь.
Y-частицы – фотоны, создают Комптон-эффект и фотоэффект, образуют электронно-позитронные пары, что подтверждает возможность превращения электромагнитной волны в вещество – единую картину мира.
Рентгеновское излучение
В волновом спектре рентгеновское излучение расположено между ультрафиолетовыми лучами и γ-излучением.
Для создания потока фотонов на рентгеновских частотах используют электровакуумные приборы – трубки. В них 99% затрат энергии – тепловые потери, и 1% создает требуемое излучение.
По степени воздействия лучи относят к мягким или жестким. Для биологических объектов они мутагенные, приводят к ожогам, раку и лучевой болезни.
Какова допустимая доза облучения при медицинских исследованиях?
Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?
Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.
-
Опасная доза облучения
Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.
Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.
Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.
-
Есть ли польза от радиации?
Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.
Где можно пройти обследование
Чтобы выполнить процедуру рентгена легких, можно обратиться в любое медицинское учреждение. Рентген-аппаратами оснащены как государственные больницы, так и частные клиники. Процедура проводится в специально оборудованном кабинете, стены и двери которого дополнительно усилены для предотвращения проникновения сквозь них рентген-излучения. Выдача заключения с расшифровкой результата занимает от 15 минут до часа.
Возможна ли процедура на дому
Рентген легких производится в вертикальном положении, то есть стоя. Некоторые заболевания не позволяют выполнить данное требование. В подобных ситуациях используются мобильные рентгенографы, которые дают возможность проводить обследование больного на дому или в медицинской палате. К категориям таких пациентов относятся следующие:
- со степенью инвалидности;
- престарелые;
- онкобольные;
- с обездвиженными нижними конечностями (гипсом);
- являющиеся нетранспортабельными;
- тяжелые инфекционные больные.
Выезд и обследование на дому проводит специальная бригада врачей. Качество результатов мобильной рентгеновской установки и стационарного обследования не отличаются по своей точности.
Как проводится процедура?
По сравнению с обследованием остальных внутренних органов, при рентгенографии легких предварительная подготовка не требуется. После того, как пациент заходит в кабинет рентгенолога, ему предлагается снять все, что на него надето до пояса — вместе с украшениями и. Затем на него надевается специальный защитный фартук, закрывающий половые органы и живот, после чего больной встает между рентгеноскопической трубкой и приемным устройством. Его попросят сделать глубокий вдох, задержав дыхание на пару секунд – этого времени достаточно для получения четкого и резкого снимка. Иногда от пациента потребуется прижаться к аппарату под определенным углом – в таком состоянии проблематичный орган будет лучше виден.
Сейчас существуют аппараты, которые позволяют проводить рентген легких с минимальной дозой облучения.
В целом визит в рентгенологический кабинет продолжается от пяти до десяти минут.
Диагностика
Появление лучевой болезни выявляется на основании первичных признаков
Пристальное внимание уделяется пациентам, которые побывали в ситуации, когда превышена безопасная доза радиации
Степень тяжести поражения определяется в ходе исследования образцов крови пострадавшего. Выясняется наличие анемии, ретикулоцитопении, лейкопении, СОЭ.О наличии лучевой болезни говорят признаки кровотечения в миелограмме. В дополнение к исследованию крови проводят следующие диагностические мероприятия:
- Забор соскобов кожных язв и проведение микроскопии.
- ЭЭГ.
- УЗИ брюшной полости.
- УЗИ щитовидной железы.
- УЗИ органов таза.
Одновременно с этим проводятся консультации с узкими специалистами: гематологом, эндокринологом, невропатологом и гастроэнтерологом. Они внимательно изучают клиническую картину болезни и результаты всех обследований.